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Abstract. Uncertainty modeling is a critical element in the estimation of robust stabil-

ity margins for stability boundary prediction and robust flight control system development.

There has been a serious deficiency to date in aeroservoelastic data analysis with attention

to uncertainty modeling. Uncertainty can be estimated from flight data using both paramet-

ric and nonparametric identification techniques. The model validation problem addressed

in this paper is to identify aeroservoelastic models with associated uncertainty structures

from a limited amount of controlled excitation inputs over an extensive flight envelope. The

challenge to this problem is to update analytical models from flight data estimates while

also deriving non-conservative uncertainty descriptions consistent with the flight data.

Multisine control surface command inputs and control system feedbacks are used as sig-

nals in a wavelet-based modal parameter estimation procedure for model updates. Transfer

function estimates are incorporated in a robust minimax estimation scheme to get input-

output parameters and error bounds consistent with the data and model structure. Un-

certainty estimates derived from the data in this manner provide an appropriate and rel-

evant representation for model development and robust stability analysis. This model-

plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the

NASA Dryden Flight Research Center F-18 Systems Research Aircraft (F-18 SRA). Results

show that much insight can be gained from a method which incorporates parametric and

nonparamteric uncertainty into various uncertainty structures for quantitative measures of

robust stability relating to parameter variations and unmodeled dynamics.

Introduction

Aeroservoelastic systems comprise interactions of generally multi-input multi-output sampled-

data control feedback with actuation dynamics coupled with aeroelasticity. Highly aug-

mented closed-loop flight test data require extra care in distinguishing system component

dynamics. Discrimination of source and response effects for proper understanding of issues

in causality may be problematic. Flight test verification of an aeroservoelastic model can

also have difficulty in discerning the individual subsystem dynamics because of inaccessible

parameters or inadequate sensing for system identification procedures. For instance, aero-

dynamic parameter identification algorithms for aeroelastic effects may encounter problems



with flexibility [s],closed-loopcoupling,andtransonicnonlinearity.
Modelverificationoveranextensiveflight envelopepresentsmorechallenges.Testdata

acquisitionis expensivesomaneuversaredesignedfor maximumefficiencyanddataqual-
ity. A verificationmethodis desiredwhichaccuratelyandefficientlyincludesidentification
of critical parameters,addressesmismodelingand unmodeleddynamics,dealswith test
conditionand systemvariability,and derivesdata-consistentparametricand nonparamet-
tic uncertaintydescriptions.Parametricuncertaintyis generallycausedby mismodeling
of systemproperties,off-nominaltest conditions,andmodelover-simplifications.Nonpara-
metricuncertaintyoftenrelatesto unmodeleddynamicsandexogenousinputs,andrequires
weakerassumptionson the identifiedsystem.

With suchapparentcomplicationsin mind, this papertakesthe approachthat estima-
tion of aeroservoelasticmodelsmust dealdirectly with uncertaintyin modelverification.
Parameteridentificationwill beappliedfor modelupdatesfrom thetestdatawhileaddress-
ing mismodelingandunmodeleddynamics.Parametricandnonparametricuncertaintyare
incorporatedto helpminimizeconservativenessandincludeboth structuredand unstruc-
tured uncertainty.Non-statisticalestimationapproachesarepreferredto avoidrestrictive
assumptions,minimizealgorithmiccomplexity,and improvereliability in the form of error
bounds. Most importantly,the effectivenessof model-basedquantificationof uncertainty
boundsis appealingfor robustcontrol-orientedapplications[i, 9,25].

Set membershipidentificationhasbeenpresentedin a varietyof contexts. Bounded
error estimation[i7], or boundeddata uncertainty [2i], characterizesfeasiblesetsof pa-
rameterswith uncertaintyestimatesconsistentwith the data, modelstructure,and prior
informationon uncertaintybounds.This last requirementcanbe in the formof unknown
but boundeddisturbances[2,26],constraintsonthe systemimpulseresponseandinputs[io],
or assumptionsonboundeddataperturbations[22]

Two general research directions of set membership estimation are: (1) obtain the exact

membership set, and (2) compute a specific optimal estimate in the membership set. The

former has suffered from computational complexity and conservatism [2, i9]. An optimal,

robust minimax estimate approach is applied in this paper, but the apriori uncertainty

bound is not required. Minimum upper error bounds are computed with the parameter

estimates such that the feasible set is described as a function of the error bounds. Hence,

computation of the minimum error bound results in a smallest non-empty feasible set [2s].

Transfer functions and modal parameter estimates derived from time-frequency rep-

resentations have previously been applied to estimate state-space aeroservoelastic mod-

els [6, ii]. Morlet wavelet filtering [5, 7, 2o] is employed in this paper to update modal pa-

rameters as a first step in aeroservoelastic model identification and uncertainty estimation.

Standard transfer functions are then employed in the estimation of input-output parame-

ters with associated uncertainty using an optimal minimax procedure. Bounds derived from

these estimates define parametric and nonparametric errors which relate to multiplicative

and additive uncertainty structures, respectively, for mixed-# [4, 3o] robust stability analyses.

A lack of attention to uncertainty modeling in aeroservoelastic data analysis is addressed

in this paper. The problem is to derive models with non-conservative uncertainty descrip-

tions consistent with the flight data. F-18 Systems Research Aircraft (SRA) [24] data are

used to demonstrate comparisons made between models derived from robust estimation

methods using multiplicative and additive uncertainty structures.



Uncertainty Modeling

The aeroservoelastic open-loop plant model includes rigid body and elastic modes, cou-

pled high-order actuator dynamics, and control surface modal dynamics [15]. Including the

aerodynamic lag states, the aeroservoelastic state equations take the following form

5c= Ax + Bu ; U=bd

y = Cx + Du ; x = [_]_]r_ijirii_iabJ

consisting of input control surface commands 5d, actuator states _, rigid body states _r,

flexible mode states Ye, aerodynamic lag states Ya, and control surface displacements 5.

Aeroservoelastic plant, P, is therefore represented as the state-space operator. Associated

with this time-domain representation is the transfer function, P(s), a function of the com-

plex Laplace variable, s, such that y(t) = P(s)u(t).

P(s) = D + C(sI- A)-tB (1)

Controller K(s) is modeled similarly, but being a digital implementation, it is modeled as

a function of discrete complex variable, z, as K(z = e sT) specified by the sampling time T

and a zero-order sample-hold at the input of the controller.

A robust characterization of the feedback model incorporates unstructured uncertainty

to account for unmodeled dynamics and parameter variations. Unmodeled dynamics are

represented with simple cone-bounded transfer functions at the input-output reference lo-

cations. Assume the model is suitably scaled with weightings Wz and W2 so the uncertainty

can be represented by operator WzAW2. With uncertainty incorporated into the proper

loop reference locations, the robust stability condition is determined by analyzing unity-

norm bounded perturbations, IIAIIc¢< 1, with the Small Gain Theorem [30].

Actuators Sensors

zi L Zo=J L

_I I

Figure 1: Closed-loop Model with Input-Output Complex Multiplicative Uncertainty

Multiplicative uncertainty as shown in figure 1 is used to represent unmodeled dynamics

and errors at the feedback output sensors (Wo = AoZo) and actuator input commands

(wi = Aizi). Each of Ao and Ai are diagonal complex perturbations of appropriate output

or input dimensions. Performance specifications are in terms of sensor noise attenuation

(output response to output commands) and actuator disturbance rejection (input response

to input commands), respectively.



Multiplicativeperturbationat the output results in perturbed model/5 o -- (I + Ao)P,

and at the input the perturbed model is _ -- P(I+A_). Necessary and sufficient conditions

for unstructured robust stability are then derived from tests on loop sensitivity functions.

Unstructured robust stability tests representing these types of uncertainty are described

from the complementary sensitivity matrix functions of complex P(s) and K(s)

IIAoIIc_ < 1; IIW2ToWIIIc_ < 1; To = PK(I + PK) -1

IIA_II_<I; IIw4_w3II_ <1; _=KP(I+KP) -1. (2)

Another uncertainty characterization of interest in this paper is the additive perturba-

tion, Aa, for which the perturbed plant is/sa -- P + Aa, which is depicted in figure 2 as

additive plant errors (wa -- Aaza). The corresponding control action robust stability test of

input response to output disturbances from additive plant errors is imposed by loop shape
condition

IIW6K(I + PK)-Iw511_ < 1. (3)

Figure 2: Closed-loop Model with Additive Aeroservoelastic Plant Uncertainty

The characterization which augments (wa -- Aaza) with the complex multiplicative

uncertainty representation of unmodeled dynamics from figure 1 is shown in figure 3. Here

Aa is a full-block complex perturbation since frequency-dependent errors are allowed to

enter any of the multi-input-multi-output loops in an arbitrary fashion.

The robust stability criteria of (2) vary with the uncertainty description. A mixed

uncertainty structure consists of (real) parametric and (complex) unmodeled dynamic per-

turbations and cannot be treated adequately with a simple cone-bounded representation.

The structured singular value, #, is then used to reduce conservatism for problems with

structured specifications of uncertainty [15,30]. Robust stability tests of (2) are stated in

terms of an upper bound of #A (noting # dependence on A) at each frequency w [4].

In this paper, the analysis setup of figure 1 is primarily used as a benchmark for aeroser-

voelastic stability analysis in the # framework. To establish a common analysis consistent

amongst the various uncertainty structures, while dealing with structured uncertainty in

general, the robust stability criteria of (2) are replaced with

#Ao(W2ToW1 ) < 1, IIAolloo < 1 ; #A_(w4_w3) < 1, II/X_lloo< 1 (4)
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Figure 3: Closed-loop Model with Additive and Complex Multiplicative Plant Uncertainty

and the control action stability criteria of (3) similarly becomes

#Aa(w6g(I+ PK)-Iw5) _< 1, [[Aai[_ < 1. (5)

These conditions imply that for all perturbations matrices, {Ao, Ai, Aa}, with appropri-

ate structure and satisfying the upper bound constraints, [[Aoi[oo < 1, [[Aii[oo < 1, and

[[Aai[oo < 1, respectively, the perturbed system is stable. Also, there is a particular per-

turbation matrix not satisfying the contraints that causes instability, and this is found best

from the computational lower bound [4, 30]. Therefore, the # upper bound plot determines

the size of perturbation for which the loop is robustly stable. Lower peaks imply more

robust stability.

In the present application, real parameter uncertainty is represented with bounded real

perturbations, [_1,'",_,_], [[_i[[_ < 1, in the aeroservoelastic plant output. A diagonal

perturbation block is augmented to the complex output perturbation block, Ao, to get

Ar = ".. ; Aro= A_ Ao ; W_o =A_oz_o. (6)

The multiplicative structure from figure 1 is modified with the additional (wr -- Arzr)

as shown in in figure 4. A real-# analysis augmented with a complex block is a mixed-#

problem. Complex blocks added to real perturbation problems have engineering relevance

by accounting for phase uncertainty, besides guaranteeing continuity properties and assisting

convergence [4]. The complex blocks, {Ao, Ai}, for the current problem are also motivated by

uncertainty modeling of unmodeled dynamics as a function of the nominal complementary

sensitivity transfer functions in (4), and so are retained from figure 1.

Alternatively, the effect of real parametric uncertainty at the plant input or output

can be shown to represent an additive uncertainty in the plant transfer function, as in fig-

ure 3. In the current analysis, the additive perturbation derived from the plant uncertainty

(wa -- Aaza) is compared with the real perturbation analysis (wr -- Arzr) of the associ-

ated structured uncertainty of figure 4. These results will be compared for the F-18 SRA
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Figure 4: Input-Complex with Output-Mixed Multiplicative Uncertainty

aeroservoelastic model by incorporating a common output uncertainty into the two diferent

uncertainty structures.

Wavelet Filtering and Modal Identification

Time-frequency analysis provides a powerful tool for the analysis of nonstationary sig-

nals [13, 16, 27] Signal structure is revealed by quantifying the time-frequency distribution

of signal energy as a joint function of time and frequency. Energy density concentrations

are revealed as specific areas in the time-frequency plane.

A novel multiresolution wavelet signal processing method is applied to time-frequency

analysis of signals by decomposing data into cells with properties of scale and frequency con-

centrated in time. The cells consist of Gaussian-windowed sinusoidal basis functions, also

known as Morlet wavelets, creating a multiscale decomposition in a filter bank structure [27]

Competing requirements of time and frequency resolution, subject to the uncertainty prin-
ciple [16], is accomplished with a combination of dyadic multiscale decomposition, compact

orthogonality, and harmonic wavelet properties [14].

Parameter estimates are derived from time-frequency representations using Morlet wavelet

filtering [5, 7, 15]. Morlet wavelets consistute the basis for the energy-density distribution and

are then used to estimate the modal parameters. The wavelet basis representation of the

signal is therefore a projection subspace for extraction of modal dynamics.

As a first step in aeroservoelastic model identification and uncertainty estimation, the

state-space transfer function plant description of (1) is transformed into real bidiagonal
modal form with transformation matrix T

p z

-w l 0 0 0
0 0

0 "'. 0

0 0 --(_Wn)M --WdM

0 0 0 WdM --(_Wn) M

CT

TB

D

(7)



These two-by-two blocks of complex conjugate roots represent M number of modes, where

is the modal damping ratio, wn the natural modal frequency, and Wd = wnv_- _2 is

the damped modal frequency for each mode (ignoring real roots for simplicity here). From

this state-coordinate transformation the roots of structural modes are generally simple to

discriminate from actuator, rigid body, and aerodynamic lag states.

Modal parameters estimated from Morlet wavelet filtering of the open-loop aeroservoe-

lastic plant transfer function are incorporated into the A-matrix modal form under the

following guidelines:

1. Estimated modal frequency lies within specified range.

2. Modal parameter estimate confidence factor is sufficient [5].

3. Search over Wd for nearest estimate to A-matrix imaginary pairs.

4. A-matrix complex conjugate pair must correspond to a structural mode.

5. A-matrix modal pairs are replaced with estimates under criteria 1-4.

In this paper, parametric errors in modal frequency and damping estimation are not ex-

plicitly considered in the uncertainty description, as in previous studies [7, i5]. Justification

for this lies in choosing a high confidence factor for allowable estimates to help minimize
estimation error [5]. Also, this error will be implicit in the uncertainty model development

to be discussed.

Observability of modal dynamics obviously affects identifiability. All available control

feedback responses of the aeroservoelastic plant are used to identify modal parameters from

each control command maneuver. Numerous reponses become available for estimation of

most modes to establish a high degree of confidence from at least one of the responses.

Feedbacks Control commands

Longitudinal

pitch rate
normal acceleration

Lateral-directional

roll rate

yaw rate
lateral acceleration

symmetric stabilator

symmetric aileron

differential aileron

differential stabilator

rudder

Table 1: Feedback measurements (left) and control commands (right) used for the

F-18 SRA aeroservoelastic plant transfer function and modal parameter estimates.

For the F-18 SRA manuevers used in this research, table 1 lists the available control

commands used to generate the listed feedback signals for modal parameter estimation,

and subsequent transfer function estimation for uncertainty analyses. Discrete multisine

control commands are the inputs for the aeroservoelastic transfer functions. There are 25

analysis maneuvers in the matrix. Subsets of these correspond to predominantly symmetric

or antisymmetric maneuvers, but in reality most modes are excited with either type of

input. Figure 5 shows aileron command input and feedback responses from the F-18 SRA.
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Figure 5: Multisine input into aileron command with lateral acceleration and roll rate

feedback responses: Mach 0.9, altitude 5,000 feet, F-18 SRA lateral-directional case.

Minimax Parameter and Uncertainty Estimation

Uncertainty estimation for aeroservoelastic systems depends on a variety of off-nominal

factors to consider such as fuel weight, flight condition, control gains, hinge moments, and

other aerodynamic effects. The maneuvers used in this research from the F-18 SRA were

predominantly flown for the purpose of model verification and update in support of the

F-18 Active Aeroelastic Wing Program (AAW) [is]. Flight conditions therefore lie entirely

inside the F-18 AAW envelope outlined in table 2, which is predominantly transonic and

near-transonic. Aerodynamic parameter estimation, loads analysis, and aeroservoelastic

model verification were primary flight test objectives for these maneuvers.

System identification with uncertainty modeling requires determination of reliable bounds

with the nominal estimates. Interval and bounded-error estimation techniques have pre-



Mach
0.85-0.95
1.10-1.30

Altitude
5,000-15,000ft
10,000-25,000ft

Table2:F-18 SRAflight envelopein supportof the F-18AAW Program.

definedboundson theerror fromapriori knowledgeof the systemor sensors.Thisassump-
tion is unacceptable,especiallyfor analysisof aeroservoelasticflight data in the transonic
regime,sincereliableboundson theerrorsdonot exist. Mostimportantly,popularmethods
for identificationarenot model-based, so the errors are not relevant to the model, but only

depend on the data and estimation process itself.

Aeroservoelastic models are often of high order, significant dynamic range, and con-

tain lightly damped modes. Any methods which depend on simultaneous parameter and

model order estimation will have complexity problems attempting to discern order from

uncertainty. Even for fixed-order estimation, identification of structural parameters with

input-output (C and B) parameters is susceptible to non-uniqueness, convergence, and bias

problems unless severe assumptions are imposed [9, 11, 29]. Again, these procedures are often

based on statistical arguments, and often are not model-based. Stability prediction based

on errors between models and aircraft requires uncertainty relative to a model.

Robust Minimax Parameter Estimation

Robust minimax estimation not only provides the minimum upper bound on the error, but

also provides a parameter set compatible with any error upper bound [2s]. The problem is

stated in terms of error, ¢(k, O), its bound e, and parameter vector, O, given N measured

frequency response data, y(k), and model frequency response vector, ¢(k) .

o) = v(k) - ¢(k)o

= ]¢(k)O-y(k)], k=l,...,N (8)

Since the minimum upper error bound over frequency, e, is assumed unknown, it is estimated

from the minimax procedure. The minimum value of e is desired that is consistent with the

flight data frequency responses. A solution set is given by

{OI6 = arg rain max I¢(k)O - y(k) l} (9)
O k

which can be transformed to a differenrtiable linear programming problem using additional

variable, x, subject to constraints

= argm_n(x); I¢(k)O-y(k)l <_ x; k = 1,...,N.

It can then be shown that the set of all (x, O) consistent with the constraints is a convex

unbounded polyhedron, or for any x _> e [2s]

O =O+AO =O+A(x). (10)

The feasible polytope for (x, O) thus contains the exact description of the solution set of O,

including a range of feasible parameters contained in AO that satisfies (9) for any x _> e.

Therefore, the most important property of this approach for uncertainty estimation is that



a minimumupperboundon the frequencyresponseerror, e, is found which is compatible

with parametric errors, AO, so parametric errors are derived from the value of the non-

parametric error cost function.

A seemingly attractive analytic center approach to bounded-error estimation was re-

cently proposed [2, 3] to minimize logarithmic average output error

0 -- argm_n _ log I¢(k)O - y(k)l.
k

This estimator has nice properties in terms of output error minimization, robustness to

outliers, and online sequential implementations. However, these properties and error bounds

depend on apriori knowledge of noise bounds. This estimator is not chosen because of the

necessary noise assumptions and absence of guaranteed parametric error bounds.

Model Updates and Output-Uncertainty Estimation

Now the procedure for flight data analysis is described in the robust minimax estimation

framework. First, the A-matrix of (7) is updated to get estimate, __, with wavelet modal fil-

tering. Then the column of the {B, D}-matrices in (7) corresponding to the particular input

(table 1) is appropriately scaled by matching the norms of the model and estimated data
transfer functions from control command to feedback sensor. These estimates are denoted

as {/_,/)}. Each element of the model C-matrix corresponds to a modal contribution to the

feedback response. Elements of the appropriate row of the model C-matrix corresponding

to the feedback response are then chosen for optimization only if they correspond to modal

responses within a specified frequency range. Vector y is the flight data response from a

feedback sensor, being a sum of the aircraft modal responses.

Each row of the model C-matrix is expanded in a matrix diagonal

cl 0 0
0 "'. 0

0 0 c,_

A

cl 0 0

0 "" 0

0 0 c,_

D

where D is resized from elements of b corresponding to diagonalization of a row of C.

Arrange the updated model frequency response matrix, P(iwk) , to form the n-columns

(for n-modes) of matrix a2, where each column corresponds to a modal frequency response

contribution to the total feedback sensor response such that

¢(k, l) = P(iwk, 1), 1 = 1, ..., n, k = 1, ..., N.

Parameter vector, O, is the multiplier (nominally 0 = [1... 1J) on the model response

matrix, _, to match the flight data response, so the transfer function error vector, e, is

expressed as

e_> e --y-¢O. (11)

In light of the robust properties of logarithmic error criteria [3, 12, 23], and the well-known

property of Chebyshev estimators being optimal in terms of worst-case parameter error, the

objective function is chosen as a log-type Chebyshev estimator,

= arg minmax log [_0 - y[.
0 w

10



Thereis strongjustification for this performancecriteria. It hasbeenshownthat logarith-
mic error minimizationis superiorto absoluteerror minimizationfor parametrictransfer
functionestimation,especiallyfor structural systemsand high orderproblems[23] Prop-
ertiesfrom (9) still hold in a log-sensesincethe log functionand its inverse(exponential)
aremonotonicsmoothfunctionsof the data. Furthermore,log-basedfrequencyresponse
estimationdemonstratessuperiorperformancein closed-loopsystems,with mutuallycorre-
latedsignalsin feedback,andis robustto noisecharacteristicsandoutlierswithout relying
onstatisticalassumptions[12].

Parametricuncertaintyis multiplicativein the realC-matrix values since the identified

parameter vector, O, is a multiplier to the model. Decomposing the identification problem

into nominal and uncertain parts, an estimate of the real parameter uncertainty becomes

+ - ]]OOl]+ ]]o.
--

E

==_AO _ Ek]Ok,l]' l=l,...,n,
k = 1,...,N (12)

where each element of AO results from each _k ]Ok,l], a weighting by inverse absolute
column sums. Elements with denominator sums less than a small threshold retain nominal

values (AO = 0) to avoid numerical problems, but also have significance as modal

responses (column-sum magnitudes) with very low observability.

Note that AO = A(e) from the linear programming solution (compare (10) and (12)), so

the parametric error is a by-product of the non-parametric frequency-dependent global error,

e. Also note that the minimum upper bound error, e, is a constant additive perturbation

bound over frequency from the relations in (8) and (11). In either case, the non-parametric

frequency-dependent error, e, or its more

perturbation error, Aa, in figures 2 and 3.

Alternatively, the real-parametric error,

At, from (6) and figure 4 as a multiplier

output, using element-wise multiplications

conservative bound, e, corresponds to additive

AO, is naturally represented as real uncertainty,

on the nominal C-matrix (see (11)). For each

denoted by (.,), the uncertainty is described by

C_
C ± AC = OC ± AC

]Ac] -](Ao).,c]
IlzxcII _<II[zxr(zxo)].• eli (13)

where operator IlArll < 1 is well-defined, and therefore IlAroll < 1 since IlAoll < 1. Note

that real-parametric variation, AC, varies equally positively or negatively and therefore

accounts for phase variation in the individual modal contributions to the output response.

It is important to note here that AO therefore serves as both a contribution to the

additive error bound, e (see (12), allowed to be complex in general to account for phase

variations), and also as a multiplicative output parametric error in (13), so it is integral

to both types of uncertainty descriptions. Despite the common nature of the uncertainty

in both cases, the manner in which the uncertainty is modeled (complex-additive vs. real-

multiplicative) determines its structure and will affect the robust stability analysis. Com-

parisons of both manifestations will be demonstrated next.

11



Aeroservoelastic Flight Data Analysis

Three types of uncertainty structures have been discussed as being relevant to aeroservoe-

lastic uncertainty modeling. They are compared in this section.

• complex multiplicative loop uncertainty (figure 1 with criteria in (4))

• additive with complex-multiplicative loop uncertainty (figure 3 with e _ Aa in (12))

• mixed multiplicative parameter and complex loop uncertainty (figure 4 with (13))

Complex-multiplicative loop uncertainty at the input and output in figure 1 is the baseline

analysis, and this is augmented with additional perturbation blocks in the additive and

mixed analyses. All uncertainty analyses operate on models that are updated with the

wavelet modal parameter estimates unless stated otherwise. Results are for the F-18 SRA

flight condition of Mach 0.9, altitude 5,000 feet using all available inputs for the longitudinal
and lateral-directional maneuvers denoted in table 1.

Constant Maximum Additive Delta Varying Additive Delta

--15 --15

--20 --20 i

-25 _ i -25

--30 --30

--35 _ --35

oS oS

_D --40 ._ --40

"_ --45 "_ --45

--50 --50

--60 [ _ --60

' --65 '
--650 5 10 15 0 5 10 15

Frequency, Hz Frequency, Hz

Figure 6: Complementary sensitiivity #-analysis - longitudinal case.

Left plot: Complex-# analysis (thin lines, uncertainty structure in figure 1) compared

to upper bound additive-# analysis (thick lines, uncertainty structure in figure 3)

Right plot: Complex-# (thin lines) compared to varying additive-# analysis (thick lines)

Baseline complex-multiplicative complementary sensitivity #-analysis results are com-

pared with additive loop uncertainty at the output (solid) and input (dashed) in figures 6

and 7 for F-18 SRA longitudinal and lateral-directional flight conditions, respectively. Com-

parisons between upper-bound additive (e, left plots) and varying additive (_, right plots)

results are presented. Note that the additive results must be at least as large in magnitude

as the baseline since additive includes complex-multiplicative uncertainty (figure 3). These

plots demonstrate that the estimated minimax error bound can be somewhat conservative

compared to the frequency-dependent varying bound, but not too unreasonable compared

to the varying error result. Significant error bounds from the additive minimax analysis of

the flight data at this condition are 10-15dB larger than the baseline result.
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Figure 7: Complementary sensitiivity/z-analysis - lateral-directional case.

Left plot: Complex-/z analysis (thin lines, uncertainty structure in figure 1) compared

to upper bound additive-/z analysis (thick lines, uncertainty structure in figure 3)

Right plot: Complex-/z (thin lines) compared to varying additive-/z analysis (thick lines)
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Left plot: Complex-/z analysis (uncertainty structure in figure 1) compared to mixed-/z

analysis (uncertainty structure in figure 4) and nominal complex-/z analysis

Right plot: Complex-/z analysis compared to additive-/z analysis and nominal complex-/z
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Figure 9: Complementary sensitiivity #-analysis - lateral-directional case.

Left plot: Complex-# analysis (uncertainty structure in figure 1) compared to mixed-#

analysis (uncertainty structure in figure 4) and nominal complex-# analysis

Right plot: Complex-# analysis compared to additive-# analysis and nominal complex-#

Additive and mixed uncertainties are compared with complementary sensitivity #-analysis

results in figures 8 and 9, again for F-18 SRA longitudinal and lateral-directional flight con-

ditions, respectively. Also shown in these plots are the nominal complex-multiplicative

results computed from aeroservoelastic models before any updates from flight-derived pa-

rameter estimates were incorporated.

Two major observations can be pointed out in figure 8. First, there is significant differ-

ence between the nominal and updated (using {_4, B, C, D}) complex-multiplicative results,

demonstrating the significant effect of parametric updates on the nominal model. Also, the

left plot mixed-multiplicative results concide with the baseline complex-multiplicative re-

sults, whereas in the right plot, the additive results (same as figure 6) are 10-15dB larger.

Dominant modes are symmetric first wing bending (near 6 Hz), antisymmetric fuselage

first bending (near 8 Hz), antisymmetric wing first bending (near 9 Hz), and symmetric

fuselage first bending (also near 9 Hz). As expected, both mixed and additive results are

at least as large in magnitude as the baseline. In the lateral-directional case in figure 9,

while the output-mixed-# magnitude is the largest (solid thick line in left plot), and much

larger than the output-additive result (solid thick line in right plot), the additive results are

reversed in that the input-additive magnitude (dashed thick line in right plot) dominates

with values above all the other results. Despite the relationship between the mixed and

additive uncertainties (A0 4==_ e, see (12)) the connection is disguised by the manner in

which the uncertainty is incorporated (figure 4 compared to figure 3).

Analysis of all the flight conditions (table 2) does not reveal any consistent trends be-

tween the mixed and additive results. Quality of models and flight data, and loop structure

(longitudinal or lateral-directional) are primary considerations. For example, transonic con-
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ditions often exhibit larger uncertainty because of the model sensitivity [15]and the relatively

poor quality of flight data from exogenous inputs due to aerodynamic effects. Another source

of significant uncertainty can be dynamic modal cross-axis coupling, especially with modes

closely-spaced in frequency, between symmetric and antisymmetric modes. Aeroelastic and

aeroservoelastic models are often developed with a preferred axis orientation, symmetric or

antisymmetric. Cross-axis dynamics will necessarily be revealed as unmodeled dynamics in
such a situation.

Lower bounds of # provide the perturbation, A, which causes instability [4] with respect

to its structure (see commments below (4)). In the left plots of figures 10 and 11, lower

values of the minimum perturbation denote the more sensitive frequencies. In the right plots,

corresponding indices of the real parameters (longitudinal: 1-22, lateral-directional: 1-37)

and complex uncertainty control feedback loops (longitudinal: 2 output loops with indices

23-24; lateral-directional: 3 output loops with indices 38-40) are marked. This information

shows which uncertainties in each feedback, at specific frequencies, result in the minimum

perturbation-to-instability conditions of the left plots. For example, complex uncertainty

in all output loops (longitudinal: indices 23-24; lateral-directional: indices 38-40) is very

significant. Real parameters contributing to pitch and roll rate are the other perturbations

important in the instability mechanism. There are no critical real perturbations in the yaw

rate or lateral acceleration loops (lateral-directional: indices 14-37).

Conclusions

Aeroservoelatic model identification with uncertainty is addressed in this paper to present

a robust data-oriented procedure for model development. Surface command inputs and

control system feedbacks are used as signals in a wavelet-based modal estimation procedure

for modal parameter updates. Transfer functions are incorporated in a robust minimax esti-

mation scheme to identify input-output parameters and structured error bounds consistent

with the data. Uncertainty estimates derived from the data in this manner provide appro-

priate and relevant representations for robust stability analysis useful for model validation

and control system design. This procedure is an automated, efficient, and reliable approach

for analysis of numerous flight data sets for robust stability and model development.
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